A String Metric Based on a
One-to-one Greedy Matching Algorithm

Horacio Camacho and Abdellah Salhi

The University of Essex, Colchester CO43SQ, U.K.
{jhcama, as} Qessex.ac.uk

Abstract. We introduce a novel string similarity metric based on a
matching problem formulation. This formulation combined with other
heuristics generates comparatively more accurate string similarity scores
than some other methods. The results of the proposed method are im-
proved by training the method on domain data. A detailed description
of the method as well as computational results on many databases are
given.

1 Introduction

Automatic methods for duplicate record detection such as record linkage, [1],
merge/purge, [2], duplicate detection, (3], and Hardening, [4], among others,
have been suggested for many years now. Although different in concept, they
all require, in one form or other, the use of string similarity metrics, in order to
decide if two records are similar enough to be considered as duplicates.

String similarity metrics can be roughly divided into three general groups [5]:
Token-based metrics, character-based metrics and hybrid metrics. The token-
based metrics, of which Jaccard, [6], Cosine and TFIDF, [7], are members, con-
sider strings as “bags of words”, [7]. Character-based metrics such as the Jaro
metric, (8], and its variants, count the number of similar characters in a pair
of strings. Edit metrics, such as the Levenshtein, [9], and its variants, count
the number of character-level operations (delete, insert, substitute) required to
transform one string into another treating the string as a sequence of characters.
Hybrid metrics combine both the token-based and the character-based metrics.
In a hybrid metric, a token-based metric uses scores obtained by a character-
based metric. Common examples of hybrid metrics are Soft TFIDF [5], and the
metric due to Monge and Elkan (3], also known as Level2 method. For a good
survey of string metrics, the reader is advised to consult [5]. There, a comparison
between several string metrics has been carried out and Soft TFIDF performed
best on average.

Because the results from using individual metrics often lack consistency, tech-
niques such as the Support Vector Machine (SVM) approach, [10], that combines
results from different metrics, has been introduced. This regressional type ap-
proach may be limited in its applicability due to computational costs particu-
larly when the number of participating metrics is high and the input databases

© A. Gelbukh, S. Torres, 1. Lopez (Eds.)
Advances in Computer Science and Engineering
Research in Computing Science 19, 2006, pp. 171-182

172 Camacho H. and Salhi A.

are large. The consistency issue spawned other approaches such as those which
rely on training. In [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], and
[21] trained techniques have been suggested. Because parameter tuning is done
according to what domain the input database is concerned with, consistency
in performance is therefore enhanced. So far, however, trained techniques are
mainly of the character-based type.

Here we suggest a novel metric for string similarity. The approach is hybrid
in nature; it combines a character-based metric and a token-based metric, both
explained later. Moreover, it can also be trained for a given domain. The training
procedure will be explained later too. Both the non-trained and the trained
versions of it are compared on a set of databases with several approaches as
can be found in SecondString, [5], and Simmetrics Java toolkits, [22]. The non-
trained version performs consistently well in all experiments. But, the trained
version performs better and compares favorably with all metrics considered.

In the next section we provide a motivation for this metric. In section 3 we
formalize the presented ideas into a model. In section 4 we explain the string
metric. In section 5 we illustrate the method with an example. In section 6
we define a method to estimate the parameters of the proposed string metric.
Section 7 contains comparison results and section 8, the conclusion.

2 Motivation

Consider a pair of strings T and U, which, through tokenisation, we break
into substrings (tokens) as: T = {T},T3,...,Tr} and U = {U),U>,...,Us}. A
character-based method calculates all similarity scores s;; (Ti, U;) between to-
ken T; and token U; for ¢ = 1,...,I and j = 1,...,J. Based on these scores,
a token-based method selects the most adequate token pairs in order to com-
pute the similarity score s(T,U) of strings T' and U. Both scores s;; (T3, Uj)
and s (T, U) take positive and possibly zero values with the large values corre-
sponding to good matches and low values to (potentially) non-matches in both
character and token comparisons.

Ideally, similarity metrics (hybrid or otherwise) must be consistent. In other
words, the similarity of similar or near similar strings returned must be high and
that of “not so similar strings” must be low in comparison. Unfortunately, this is
often not the case and the reason may well lie with the way the token similarity
is calculated.

Consider the two most common hybrid methods: Soft TFIDF and Level2.
Soft TFIDF defines CLOSE (6,T,U) as a triplet containing strings 7" and U
and a scalar @ such that for any token T; included, there is some token U; such
that s;; (Ti,U;) > 6, and s;; is a similarity score from a character-based string
metric, such as Jaro-Winkler, [23]. In contrast, the Level2 method considers the
complete set of tokens in 7', and then chooses as similar to each token T3, those

tokens U; from U having: m{if(sij (Ti, U;) where s;; is a similarity score from a
J=

character-based string metric, such as a variant of the Levenshtein method due

to Monge and Elkan, [23].

A String Metric Based on a One-to-one Greedy Matching Algorithm 173

To illustrate what we have just said, we consider the following example: T =
{John, Johnson}, U = {Johns, Charleston}, V = {J., Charletson}. Soft TFIDF
computes s (7,U) = 0.95 and s (U,V) = 0.49. Level2 computes s(T,U) =1.0
and s (U, V) = 0.84. While one might almost be certain that 7" and U are not
pointing to the same real object, and there is more evidence that U and V
are more similar than 7' and U, those methods score s (T, U) higher since they
consider the same token Uy if all tokens in T are very similar and each token
score Sjk, Sz2k, .-+ SIk 1S very close to 1.

We consider the most appropriate token pairs in a different manner. We define

the most appropriate token pairs as a one-to-one matching setting, similar to the
following assignment problem:

maxz = Zsijzij oA (1)
i,J

inj = l,V] and Z:L‘ij = I,V‘l (2)
i J
i=1,..,1,j= 1,..,J,5i € R+,.’B,‘j € {0,1}

where z;;, is a binary variable which takes value 1 if token T; and token Uj
are considered as a match, and 0 otherwise, but with the difference that here
we define matched pairs as the set of highest scored pairs of tokens. In the next

section we formalize our method. We also provide an example that explains some
drawbacks of the assignment model.

3 Formalization

A one-to-one match between tokens in T and tokens in U implies that t.he
assignment constraints (2) are satisfied. Note that the set of matching pairs
we look for are potentially different from those returned when the assignment
problem is solved. While the assignment problem maximizes the function (1),
subject to restrictions (2), we instead suggest the following procedure:

Algorithm 1: Select a maximum score value sx; = m;?x si;j such that token T}

and token U; have not been found to match another string yet, or tbey satisfy:
2iza = 0 and), zx; = 0. The token pair (T}, U;) is then con51dere‘d as a
matching pair, thus setting zy; = 1. This procedure is repeated until restrictions
(2) are completely satisfied.

An alternative way to find the set of matching pairs, is by sor.ting the set
of scores s;; in descending order. The pair with maximum score s cbosen to
be part of the overall match. The process is repeated bearing in mmfi that
restrictions (2) must be satisfied at all time. This process is not computathnally
expensive and amounts mostly to the cost of a sorting algorithm. In fact it can
be reduced further by removing from the subsequent list of scores those which

174 Camacho H. and Salhi A.

do not correspond to pairs satisfying the restrictions. These are found trivially
since all pairs in the row and column of the chosen pairs so far are barred from
being chosen by the assignment constraints. This consideration reduces the work
substantially.

This differs from the assignment problem in that we always choose those
token pairs with a score which is as high as possible for a match, when there is
no clear match. For instance, consider the example of Table 1.

Table 1. Example of two similar strings: T and U

String T Strng U
Gerardo F. Jolmes Dorado Francisco D. Jolmes Dorado

Let: s;4 = 0.6,50; = 0.6,s33 = 1.0,5842 = 0.6,544 = 1.0, and all the other
scores are set to 0. The solution to the assignment problem is {14, Z21, Z33, T2}
corresponding to the matching pairs {(Gerardo, Dorado), (F., Francisco), (Jolmes,
Jolmes), (Dorado, D.)}. Since s44 (Dorado, Dorado) has a higher score than sz
(Dorado, D.), then the better matching pairs would be {(F., Francisco), (Jolmes,
Jolmes), (Dorado, Dorado)} corresponding to the solution {z21, 33, T44}. This,
however, has a lower assignment objective (z = 2.6) in (1) than that of the
solution returned for the assignment problem (z = 2.8). However, we do be-
lieve, and this is backed by our results, that in fact this is a better way to settle
the matching problem between tokenised strings, in particular when there is no
perfect match between the strings. This situation occurs often, since in most
databases the ratio of redundant to non-redundant records is more likely to be
low than high. It is important to add that when this is not the case then the
solution advocated here will return a similar result to that of the solution to the
assignment problem.

4 The Hybrid Method

The method about to be suggested is hybrid in nature. In the following we
introduce the two aspects of it, the character and the token. As we shall see,
some techniques used in the past have also been implemented here, but also
some improvements have been introduced. Even though each of the character
and the token based metric are defined differently, both apply the same way of
assigning pairs (characters and tokens) as defined in Algorithm 1.

4.1 Character-based Similarity Score

Let each token T; and Uj, i = 1,...,J and j = 1,..., J, of a pair of strings (T, U), be
broken into a set of characters T; = {T},T?,...,Tf } and U; = {U},U%,...,US }.

Let 6 (Tif, U;’), f=1,..,F, and g = 1,...,G, be a function equal to 1 if charac-

ters: T/ = U7, and 0 otherwise.

A String Metric Based on a One-to-one Greedy Matching Algorithm 175

Same characters can be found in non similar tokens, for example, from Table
1 the pair of tokens: (Gerardo, Dorado) share the same characters “a”, “r”,
“d” and “o”, but the positions of “a” and “r” in this example are making an
important difference. In order to account for the order in position of characters,
we introduce the following function:

f 9 __1_ == H — i g —
ate = {8 (TLU7) =315~ gl it 1f —gl <vand 6 (T UF) =1 (g
0, otherwise ’

where v is a constant which penalizes the difference between the positions of
matching pairs by the quantity: —21 |f — g| and at the same time restricts the
number of positions where a possi%le match might be found, if for example,
v = 3, and if |f —g| > 3, then d{jy = 0. This condition also speeds up the
computation since no characters are worth exploring when position is bigger
than: |f — g| = 3.

Given a set of similarity scores of characters d{f , by Algorithm 1 we can
define a set of matching pairs of characters (Tif ,UY) by setting s5g = d{jg . Thus,
we define our token score as:

sij = SqTsa/(2F) +) 87425/ (2G) (4)
fg fg
where z¢, is returned by Algorithm 1. :

We can make further improvements to the proposed string metric value s;; by
implementing the Winkler scorer [23]. This heuristic has been applied in the past
to the Jaro method and is defined as: s',.j = s;j +prefiz*prefizScalex (1 = sij)s
where prefiz is the largest prefix which characters of T; and Uj matcl'l, such that
a prefix is no larger than 4, prefizScale is a scaling factor which is meant to
temper down the upwards adjusted score because of the shared prefix between
the strings considered.

4.2 Token-based Similarity Score

Among the token based string metrics discussed in [5], the TFID.F was shovl&;n
to have the best results. TFIDF [7] is a vector space approach widely us.ed y
the information retrieval community, and it has also been impl.emented in for
the task of matching names such as Soft TFIDF. The latter variant has a V;:Iry
good record in name matching. We try here to replicate this success, through a
modification of the basic method. : :
Recall that TFr, is the frequency of token T; in T and I DPFr, is the u;rerse
frequency of token T} in the current dataset or “corpus”. Notice that T].;‘II.D tv:sask
initially designed for the task of searching documents, here, the searching -
is limited to match short strings compound of only few tokens (see Table 7]’.) Olt‘
example, consider a document which describes the “history of f:OmPUterS) asnlt
is expected, the token: “computer” will appear several times in the document,

176 Camacho H. and Salhi A.

in contrast, in our case, the token: “Gerardo” in string T" of Table 1, appears
only once. Notice that we are also not penalizing the positions of the tokens, as
we did in the last section for the positions of the characters, since the number of
tokens included into a string is relatively small and repetition of similar tokens

is very rare in names.
Here we consider a different way to measure the contribution of the tokens.

Instead of measuring the frequency of token T; (T F-term) we measure a match
rate term (M R-term), defined as:

MR;; = cij/ min (|T}, |U]) (5)
where c;; is the number of matched characters of a pair of tokens T; and U; and
|T| and |U| are the lengths of strings T and U, respectively. For example, from
Table 1 in the pair of tokens: (Gerardo, Dorado) c14 = 4 (“a”, “r”, “d” and “0”),
‘Tl = 7, IU[= 6 and]\/[RM = 4/6

As in [5] we compute the IDF-term as follows: IDF;; = a;aj, where: a; =
bi/\/2; b2, bi = log (IDFr,). We then define the set of token scores as:

At 1
dij = 8;; [EIDFU + §MR,-,-J (6)
Given a set of similarity scores of tokens d;;, by Algorithm 1 we can define a

set of matching pairs of tokens (T}, U;) by setting s;; = d;;. Thus, we define our
string similarity score as:

s = Zs,-j:z,-j. (7)
ij

where z;; is the solution from Algorithm 1.

5 Example

Consider the pair T' = {Jhon, Johnson}, U = {Johns, Charleston}. We compute
the character-based and token-based similarity scores as follows.

By Character-Based String Metric:

In order to compute the score of a token pair, say s1; of tokens: (“Jhon”,
“Johns™), we partition each token into the set of characterers: Ty = {“j”, “h”,
“o”, “n”} and U; = {4, “0o”, “h”, “n”, “s”}. We arbitrarily set ¥ = 3, and the
list of character scores d{j" of (3) is then computed, for instance: d}} = 6(*j”,
“j7)—3|1—1] =1, d}} = 0, and repeat this process until all the character scores

are computed. Once the list of scores difjg is computed, we apply Algorithm 1 in
order to select the most appropriate character pairs. The output of Algorithm 1
is the set: {11, 23, 32,44}, and its corresponding scores are shown in Table
2, hence Y-, ssg%fy = 3.33 and s11 = 3.33/8 + 3.33/10 = 0.75 (see (4)). By
the Winkler scorer, we set prefizScale = 0.1. Since the only prefix with perfect
match is the first character pair (%", “j”), prefiz = 1. Thus: sy, = 0.75 +
0.1(1 -0.75) = 0.775.

A String Metric Based on a One-to-one Greedy Matching Algorithm 177

By Token-Based String Metric:

We compute the scores of all pairs s;j in the same way as previously illus-
trated. In this particular case, the IDF term for each token T; and Uj is the
same, since the frequency of each token is equal to 1. The size of the corpus
for this small example is 2, thus IDFr, = IDFy, = In(2/1) and a; = a; =

IDFr,/\/3; (IDFr,)? = 0.707. We compute the number of matched characters
for a given pair of tokens c;j, for instance: c;1 =4 (“”, “h”, “0” and “n”), thus,
MR-term is obtained, for instance M R;;=4/min(11,15) (see (5)). The list of
scores, MR-terms and the set of scores d;; for all pairs of tokens T; and U; are
shown in Table 3. By Algorithm 1 we select the most appropriate pair of tokens.
The output of Algorithm 1 is the set: {z21,Z12}, hence s = 0.436+0.052 = 0.488.

Table 2. Character based string metric example of a pair of tokens: (“Jhon”,“Johns”).
The remaining scores are equal to 0

Ty U7 sif
P
TZ U 0.667
T U? 0.667
TEUL

6 Parameter Estimation

It is possible to improve the performance of the proposed string metric if we
set values of the function ¢ Tif ; Uf and the transposition constant v taking

account of the domain of the data. In some cases, a pair of characters might
have a chance to be matched if the characters are considered equivalent in the
given domain. For example, the characters “-” and “/” might be considered to
be equivalent if the data we intend to match a set of telephone numbers. We
would then have §(“-”, “/”) = 1. In other cases similar characters like “e” and
“c” might be considered to be similar if the information was extracted via OCR,
this d(%e”, “c”) =1. :

Given a training set of matching and non matching pairs, finding the equiv-
alent character pairs by hand can be difficult, since the number of possible pairs
to tune may be very large.

As in [20], we initially assume independence between matching characte?rs,
i.e. a matching character in a pair of tokens is independent of other _matcl.ung
or non matching pairs of characters. If we have n different characters in a given

vocabulary and if § (Tif . UJ-‘.’) =6 (Uf i), there are is 1(%——1—) combinations of

different pairs of characters. If for each corresponding pair:) (T,-f, U f) can be

equal to 1 or 0, then the number increases to n(n — 1).

178 Camacho H. and Salhi A.

Table 3. Token based string metric example of the pair of strings (“Jhon”,“Johns")

T: U; s;; MRi; IDF;; d;;

T: U, 0.775 0.364 0.5 0.335
T> Uy 0.914 0.455 0.5 0.436
T U2 0.175 0.090 0.5 0.052
T> U2 0.121 0.364 0.5 0.052

We can reduce the number of parameters if we define a candidate list of
possible matching pairs of characters. Such candidate list can be defined by the
algorithm described in [20], where given a set of matching pairs, the probabilities
of edit operations of characters such as insertion, deletion and transposition are
estimated by an Ezpectation Mazimization algorithm, [20].

Once the probabilities are estimated, we ignore the insertion and deletion
probabilities and we only consider substitution pairs whose probability is signif-
icantly bigger than, for instance, 1 x s

Since the independence assumption between characters might not hold in all
cases, we set the matching scores iteratively in a greedy manner. We test all the
candidate pairs of characters and set as matching those pairs which best improve
performance. We repeat this process until no further improvement is achieved.
The transposition constant 7y can also be iteratively set in the same manner. We
consider eleven possible values of + in the range (0,1).

The performance we measure in order to find the best parameter is given by
the non-interpolated average precision as defined in [5]. Where N candidate pairs
are ranked by score in a task of m matching pairs it is defined as ;11- ¥ ﬂliMQ,
where ¢ (4) is the number of correct pairs before rank position 7 and d (%) is equal
to 1 if the actual pair is a match, or 0 otherwise.

7 Experimental Results

7.1 Implementation

The method, both in its trained and nontrained forms was implemented in Java.
Source codes are available at: privatewww.essex.ac.uk/~jhcama/TagLink.htm.
We also implemented the tokenizer provided in the SecondString package.

7.2 The Data

Experiments were performed on each of the datasets listed in Table 4 and 3 other
datasets randomly generated by the UIS database generator, [2]. The UIS data-
base generator creates sets of records which are randomly corrupted. The level
of random corruptions per record, the total number of records to be generated
and the number of redundant records to be included in the artificial database
are preset.

A String Metric Based on a One-to-one Greedy Matching Algorithm 179

Table 4. Experimental data, source [5]

Dataset Records Redundancies
BirdKunkel 337 38
BirdScott2 719 310
Census 841 671
Cora 923 902
Parks 654 505
Restaurant 863 228

Table 5. Experimental results. Non-interpolated average precision of proposed meth-
ods VS best 14 methods. The best methods for each dataset are marked with “*”. UIS
column is the average result of the 3 randomly generated datasets

String metric BirdKunkel BirdScott Census Cora Parks Restaurant UIS

Suggested 0.939 0.977 0.447 0.908 0.937 0.939 0.956
Suggested trained 0.955* 0.985* 0.469 0.920* 0.980* 0.980* 0.992*
Soft TFIDF 0.526 0.936 0.410 0.911 0.937 0.963 0.956
TFIDF 0.740 0.970 0.107 0.911 0.922 0.964 0.927
S.W.Gotoh 0.902 0.735 0.354 0.873 0.914 0.645 0.944
UnsmoothedJS 0.808 0.969 0.117 0.865 0.833 0.787 0.927
JelinekMercerJS 0.800 0.968 0.122 0.848 0.816 0.763 0.926
Jaccard 0.691 0.953 0.117 0.876 0.825 0.804 0.928
SmithWaterman 0.903 0.564 0.371 0.871 0.913 0.598 0.943
DirichletJS 0.608 0.965 0.121 0.861 0.832 0.765 0.926
MongeElkan 0.910 0.766 0.263 0.784 0.906 0.471 0.920
OverlapCoefficient 0.530 0.959 0.107 0.764 0.780 0.834 0.856
QGramsDistance 0.020 0.786 0.325 0.869 0.902 0.693 0.952
Level2JaroWinkler 0.055 0.531 0.484* 0.783 0.873 0.687 0.907
DiceSimilarity 0.165 0.729 0.112 0.791 0.772 0.754 0.861
CharJaccard 0.016 0.499 0.377 0.628 0.887 0.630 0.878

7.3 Experimental Methodology

Having N candidate pairs ranked by score in a task of m matching pairs, we
measure the non-interpolated average precision as mentioned in section 6. We
also measure the mazimum FI, as max; F1 (i), [5], where F1(i) = 2—;{%
is the harmonic mean at rank position i, p(i) = 5(111 is called the precision at
position i, 7(z) = c—,(nﬂ is called the recall at position 4, and ¢ (z) is the number of
correct pairs before rank position <.

We compare our non-trained method against methods contained in the Sec-
ondString and Simmetrics packages. Since the number of similarity methods to
be evaluated is large, and since the number of all possible string pairs is o(1?),
where [is the size of the dataset, the computational time required for the evalu-
ation can be excessive. In order to reduce it, we compute a similarity score by a
cheap string metric for each string pair in the dataset. If the score is greater tha.n
a certain threshold, then the string pair is kept for further testing, otherwise it

180 Camacho H. and Salhi A.

Table 6. Average precision and average maximum F1 of proposed method VS 14
selected methods. Sources: 1=SecondString, 2=SimMetrics

String metric Precision F1 Time (min.) Source
Suggested 0.872 0.887 5.771 =
Suggested trained 0.897 0.895 8.334 -
Soft TFIDF 0.806 0.811 6.408 1
TFIDF 0.791 0.788 1.496 1
SmithWatermanGotoh 0.767 0.789 330.072 2
UnsmoothedJS 0.758 0.777 1.361 1
JelinekMercerJS 0.749 0.773 1.393 1
Jaccard 0.742 0.757 1.306 1
SmithWaterman 0.738 0.769 8.890 2
DirichletJS 0.725 0.739 1.391 1
MongeElkan 0.717 0.735 60.268 1
OverlapCoefficient 0.690 0.709 1.264 2
QGramsDistance 0.649 0.664 32.720 2
Level2JaroWinkler 0.617 0.658 8.069 1
DiceSimilarity 0.598 0.644 1.274 2
CharJaccard 0.559 0.580 1.855 1

is dropped. In our experiments, we use cosine [22] similarity as the cheap metric
and 0.2 as its threshold. Recall that we consider each row of a dataset as an
input string.

The domain dependent method is trained over both positive and negative
training samples. We define the training set as stated in [18]. Positive training
samples include all the real matching strings. Negative examples are selected by
the non-trained method so that the closest estimated match are included in the
training set, i.e. the non-match pairs with highest score. We sample a total of
negative samples five times the positive sample size. As in [10] and [18], we split
the available data into two, half for training and the other half for testing, and
repeat the process with the sets interchanged.

Since the positive training set might be very small in some cases, the candi-
date list of matching characters might exclude some matches. To avoid this, we
sample all possible different pairs of tokens in the dataset and obtain a matching
score s;; (T3, Uj), so that all matched pairs greater than a certain threshold & are
included in the training set or as input for the parameter estimator algorithm.
Here we set & = 0.7.

7.4 Results

We report the evaluated precision of the 14 methods that performed best on
average on all datasets. As shown in Table 5, the non-trained method performs
best in 4 out of 7 cases, and its performance is very close to the best method in
all other cases. The trained method performs best in all cases, except the census
dataset, which is the most corrupted. The main advantage of the method pro-
posed here is that it is consistent in its performance, unlike the other methods

A String Metric Based on a One-to-one Greedy Matching Algorithm 181

which show poor results in some cases. The average performance in both Preci-
sion and maximum F1 is shown in Table 6. In this case, both the trained and
the non-trained methods perform in average better than the rest of the methods
and the average computation time is also favorable compared to Soft TFIDF and
Level2 hybrid methods.

8 Conclusions

We proposed a novel hybrid string metric, which selects matching pairs of to-
kens in a one-to-one setting, similar to the assignment problem. We believe this
setting selects pairs of tokens in a better way than past approaches and it is
computationally competitive. We use the same idea of assigning pairs of tokens
to assign pairs of characters in order to define a new character based method.
This method is combined with the Winkler scorer [23] and that improves its
accuracy. For our token-based method, we define a variant of TFIDF weighting
scheme which measures the ratio of matching characters common in pairs of
strings. As mentioned before, this weighting scheme is better than TFIDF for
the task of matching short strings.

The parameters of the proposed string metric can be estimated using the
domain of the data to be processed. Although existing methods can perform
very well in some cases, they can show a very poor performance in others. Our
method, particularly when trained, performed consistently well, at least in all
cases considered.

References

1. Newcombe, H.B., Axford, S., James, A.: Automatic linkage of vital records. Science
130 (1959) 954-959

2. Hernandez, M.A., Stolfo, S.J.: The merge/purge problem for large databases. In:
SIGMOD: Proceedings of the International conference on Management of data.
(1995)

3. Monge, A.E., Elkan, C.P.: An efficient domain-independent algorithm for detect-
ing approximately duplicate database records. In: SIGMOD: Proceedings of the
workshop on data mining and knowledge discovery. (1997)

4. Cohen, W., McAllester, D., Kautz, H.: Hardening soft information sources. In:
KDD: Proceedings of the international conference on Knowledge discovery and
data mining, Boston, Massachusetts, USA (2000)

. Cohen, W., Ravikumar, P., Fienberg, S.E.: A comparison of string distance metrics
for name-matching tasks. In: IJCAI and IIWEB, Acapulco, Mexico (2003)

6. Jaccard, P.: The distribution of the flora of the alpine zone. New Phytologist 11

(1912) 37-50

7. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Communications of the ACM 18 issue 11 (1975) 613- 620

8. Jaro, M.A.: Advances in record-linkage methodology as applied to matching the
1985 census of tampa, florida. Journal of the American Statistical Society 89
(1989) 414-420

(4]

182

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Camacho H. and Salhi A.

. Levenshtein, V.: Levenshtein distance algorithm. Keldysh Institute of Applied

Mathematics, Moscow (1965)

Bilenko, M., Mooney, R.J.: Learning to combine trained distance metrics for du-
plicate detection in databases. Technical Report AI 02-296, University of Texas at
Austin (2002)

Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string
similarity measures. In: KDD: Proceedings of the international conference on
Knowledge discovery and data mining, New York, NY, USA (2003)

Bilenko, M., Mooney, R.J.: Employing trainable string similarity metrics for infor-
mation integration. In: IWEB, Acapulco, Mexico (2003)

Bilenko, M., Mooney, R.J.: On evaluation and trainingset construction for dupli-
cate detection. In: KDD: Proceedings of the Workshop on Data Cleaning, Record
Linkage, and Object Consolidation, Washington DC, USA (2003)

Bilenko, M., Mooney, R.J.: Alignments and string similarity in information inte-
gration: A random field approach. In: Proceedings of the Dagstuhl Seminar on
Machine Learning for the Semantic Web, Dagstuhl, Germany (2005)

Bilenko, M., Mooney, R.J., Cohen, W., Ravikumar, P., Fienberg, S.E.: Adaptive
name-matching in information integration. IEEE Intelligent Systems 18 number
5 (2003) 16-23

Cohen, W., Richman, J.: Learning to match and cluster entity names. In: SI-
GIR: Workshop on Mathematical/Formal Methods in Information Retrieval, New
Orleans, LA, USA (2001)

Leung, Y.W., Zhang, J.S., Xu, Z.B.: Optimal neural network algorithm for on-line
string matching. IEEE Transactions on Systems, Man, and Cybernetics, Part B
28 number 5 (1998) 737-739

McCallum, A., Pereira, F.: A conditional random field for discriminatively-trained
finite-state string edit distance. In: UAL In Proceedings of the Conference on
Uncertainty in Artificial Intelligence. (2005)

Monge, A.E.: An adaptive and efficient algorithm for detecting approximately
duplicate database records. (2000)

Ristad, E.S., Yianilos, P.N.: Learning string-edit distance. IEEE Transactions on
Pattern Analysis and Machine Intelligence 20 number 5 (1998) 522-532
Yancey, W.E.: An adaptive string comparator for record linkage. In: ASA: Pro-
ceedings of the Section on Survey Research Methods. (2003)

Chapman, S.: Simmetrics web intelligence, Natural Language Processing Group,
Department of Computer Science, University of Sheffield, Regent Court, 211 Por-
tobello Street, Sheffield, S1 4DP, UK. sam@dcs.shef.ac.uk. (2006)

Winkler, W.E.: String comparator metrics and enhanced decision rules in the
fellegi-sunter model of record linkage. In: ASA: Proceedings of the Survey Research
Methods Section. (1990)

